

R P SASMAL 1ST JUNE 2016

Interconnection

India – Nepal

Players in Indian Power Sector

Indian Power System Framework

Electricity - A Concurrent Subject

Both Central & State Govt. are responsible for overall development of Power Sector

पावरग्रिड

Key Players

Key players in transmission sector

One Nation One Grid

Indian Power Scenario

Indian Power System : A Glimpse

Total Installed Capacity – 302.8 GW	Peak Demand: 153.3 GW		Ren 42	ewable: 2.8 GW	Growth Rate: 8–9 % p.a.	
Figures (as on 30.04.2016)		Transmis	sion line	Existing (Apr '16)		By Mar'17
				ck		n
		1200 kV				363
Renewable		765kV		24,529		29,431
42.8,14% Hydro 42.8,14% Nuclear 5.8,2% Diesel 0.92,0.3% Gas 24.5,8%		400kV		147,512		157,644
		220kV		157,648		170,980
		HVDC Bi (±500kV	pole)	9,432		9,432
	— Coal 186,61%	HVDC Bi (±800kV	pole)	3,506		6,103
		Total		342,627	,	373,953
		Transformation capacity		Existing (Ap	r'16)	By Mar'17
					MV	Ά
		765kV		142,500		155,000
		400kV		210,652	•	234,372
Generation IVIX		220kV		295,062		298,265
		HVDC		15,000 M	W	22,500 MW
One Nation One Grid		Total		663,214		710,137

- Hydro In North Eastern & Northern Himalayan region. Difficult terrain
- Coal In Central India

 Chhattisgarh, Orissa, Jharkhand, Madhya Pradesh
 Forest, coal block
- Renewable Energy

 Six major RE rich states: Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra, Gujarat, Rajasthan

Peculiarities of Regional Grids in India

National Grid - Development

Installed Capacity 1947: 1,362MW

Development of National Grid

Vation

Grid Frequency

- Indian Grid was divided into 5 independent Regional Grids
- Initially, National Grid was formed by interconnecting different regions through HVDC Back-to-Back Links
- Subsequently, regional grid have been synchronised in progressive manner through EHVAC links
- Presently, synchronous National Grid has been established.
 National Grid is a continuous process to match with upcoming generation and increasing demand

Development of Synchronous National Grid

National Grid – As on today

- Reduction in Market price of energy has enabled merit order operation of generators.
- CLP-Jhajjar (1320MW), Aravali-Jhajjar (1500MW), NTPC Dadri (1820MW), Badarpur (705MW) in NR & Kayankulam(360MW) Gas Project in SR are under shut down due to availability of cheaper power from adjoining regions
- Due to merit order operation, aged/polluting power plants are being phased out thereby reducing the Carbon Footprint.
- Power market is moving towards uniform price in all regions
- □ Substantial increase in Inter-Regional power exchange through STOA utilising margins in the ISTS network

Benefit of the National Grid

SAARC Inter-connection

Developing SAARC¹ Grid – SAARC Interconnections

≻<u>Bhutan</u>

- ✓ Presently, interconnections exist with Bhutan at 400kV level
- ✓ Alipurduar (India) Punatsangchu-I HEP (Bhutan) 400kV D/c and Jigmeling Alipurduar 400kV D/C are under implementation – completion in 2015/ 2018

≻<u>Nepal</u>

- ✓ Presently, interconnections exist with Nepal through 132 kV and lower voltage trans. lines.
- ✓ Muzaffarpur (India) Dhalkebar (Nepal) 400kV D/c is commissioned by CPTC (Indian Portion) and PTCN (Nepal Portion) in Feb 2016.

➢ Bangladesh

- ✓ Baharampur (India) Bheramara (Bangladesh) HVDC back-to-back system under operation. Transfer of power upto 500MW to Bangladesh.
- ✓ 400kV (charged at 132kV) Surajyamaninagar (India) Comilla (South) (Bangladesh) is under implementation.
- ✓ 500MW HVDC module at Bheramara (Bangladesh) has been firmed up.

Sri Lanka - under sea HVDC line is under finalization

Pakistan - under discussion at Govt. level

Developing SAARC Grid – SAARC Interconnections

India – Nepal Cross border Inter-connection

India - Nepal : Present Interconnection

Power Supply Scenario - present

- Peak Demand : 1300 MW
- Installed Capacity : 760MW
- Self Generation : 350 MW
- Import from India : 300 MW
- Peak Deficit : 600-700 MW
- Nepal is suffering from acute power shortage scenario and daily load-shedding of about 12-13 hours.

India - Nepal : Power Transfer

Power Transfer through Cross-border Interconnections

	Transmission system	Additional Power Transfer (MW)
Existing	 132 kV & below Radial links Ramnagar – Gandak (Surajpura) 132 kV S/c Kataiya (Kosi) – Duhabi (Kusaha) 132 kV S/c Tanakpur – Mahendranagar 132 kV S/c 	220-240
	Muzaffarpur – Dhalkebar 400kV charged at 132 kV	80
	Sub-Total	300-320
On going	 2 nos 132 kV links being implemented by WAPCOS 132 kV Kataiya – Kusaha S/C on D/C line (Panther) 132 kV Raxaul – Parwanipur S/C on D/C line (Panther) 	120-150
(by Oct [°] 16)	Charging of Muzaffarpur- Dhalkebar 400kV at 220kV (Total Power Flow ~200MW)	120
	Sub- Total	540-590
Future (by Dec '17)	Charging of Muzaffarpur- Dhalkebar 400kV at 400kV (Power Flow ~500-600MW)	300-400
	Total	840-990

2nd Cross Border Interconnection

- The 2nd cross border interconnection is required for reliable operation of India Nepal synchronous grid interconnection. It would take care of the power transfer requirement in case of outage of Muzaffarpur Dhalkebar 400kV D/c line.
- 2nd JSC/JWG meeting held on 28th Jan 2016, advised the JTT to explore the option for <u>2nd synchronous interconnection</u> (by 2018-19 time-frame) irrespective of development of new hydro project in Nepal.
- The JTT proposed Gorakhpur-New (India) New Butwal (Nepal) 400kV D/c line (Quad)

India – Nepal Existing and On going interconnections

Future Power Scenario

- Lot of hydro generation is expected in Nepal upto 2035 time-frame (282 projects, 45GW)
- A Joint Technical Team (JTT) was constituted in the 1st JWG / JSC meeting to identify the transmission requirements for evacuation of power hydro projects in Nepal corresponding to the time frame of 2021-22, 2025 and 2035.

	2021-22	2025	2035
Total New Projects	6.9 GW (168 Projects)	14.7 GW (229 Projects)	45 GW (282 Projects)
Load Demand (Peak)	2.4 GW	2.9 GW	6.2 GW
Maximum Exportable Power from Nepal to India (During Off-Peak demand)	5.6 GW	12.9 GW	24.4 GW

Future Cross Border Interconnections

 6 number of Cross Border corridors have been identified progressively till 2035 along with the development of Hydro Projects

S.No.	Time- frame	Maximum Export (GW)	Additional Cross border Inter-connections
1	2021-22	5.6	2
2	2025	12.9	2
3	2035	24.4	5

- Along-with cross border inter-connections, East-West Power Highway in Nepal to be developed progressively.
- <u>2021-22 timeframe</u>

Cross Border Interconnection	East West Power Highway
Muzaffarpur – New Dhalkebar 400kV D/c (Quad) -2 nd line	LILO of New Butwal – New Hetauda 400kV D/c (Quad Moose) line at New Damauli
Lumki – Bareilly 400kV D/c (Quad) : 1 st	LILO of New Butwal – New Hetauda 400kV D/c (Quad Moose) line at Naubise

Future Cross Border Interconnections

• <u>2025 timeframe</u>

Cross Border Interconnection	East West Power Highway		
Gorakhpur (New) – New Butwal 400kV (Quad): 2nd	Charging of New Duhabi – New Dhalkebar 400kV D/c (Quad Moose) at 400kV		
Attaria – Bareilly 400kV D/c (Quad)	New Damauli – New Butwal 400kV D/c (Quad): 2nd		
Reconductoring of Muzaffarpur – Dhalkebar 400kV D/c (Twin) to Twin HTLS	New Butwal – Kohalpur via Lamahi 400kV D/c (Quad) line		
	Lumki – Attaria 400kV D/c (Quad)		
	Kohalpur – Lumki 400kV D/c (Quad)		
	LILO of New Butwal – Kohalpur 400kV D/c (Quad) line		
	at Lamahi		

<u>2035 timeframe</u>

Cross Border Interconnection	East West Power Highway
New Duhabi – New Purnea 400kV D/c (Quad): 1st	
New Duhabi – New Purnea 400kV D/c (Quad): 2 nd	Already developed in 2025 time-frame
New Dhalkebar – Muzaffarpur 400kV D/c (3rd line - Quad) line	
Lumki – Bareilly 400kV D/c (Quad): 2 nd	
Kohalpur – Lucknow 400kV D/c (Quad)	

Evacuation of Future projects – 2035 timeframe

Issues for Interconnection

- Muzaffarpur Dhalkebar line to be charged at 220kV & 400kV within scheduled timeframe (Oct' 16 and Dec' 17) to facilitate more power transfer to the Nepal grid.
- The Second cross- border interconnection (Gorakhpur-New (India) New Butwal (Nepal) 400kV D/c quad line) should be implemented at the earliest for reliable and secure operation of the grid.
- Institutional developments (including Regulatory Commission) may be expedited so as to facilitate smooth transfer of power across the border.
- NEA should be involved in planning and development of evacuation system from Private Sector generation projects in Nepal so that the transmission system within Nepal could be optimised.

Thank You

